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1 Overview

My approach to this challenge was initially influenced by what I knew of the Netflix prize competition ([1]), so
my early efforts were focused on creating a large number of very different skill measures, and then “blending”
them in order to create a robust skill measure which would take into account all of the various aspects considered
by its components. My hope was that the primary constraints to this approach would be my own patience, and
implementation time—I was confident that I could come up with any number of bad ideas for how to measure the
skill of a chess player, and that the performance of my final, blended classifier would continue to improve as the
number of these bad ideas multiplied.

I say that this was my énitial approach because implementing it proved to be a greater challenge, in practice, then
I had at first hoped—when blending different skill measures, I found that the top one or two components completely
determined the final result, with the other, worse-performing components being almost entirely ignored, even those
which T had reason to believe were capturing aspects of the data which were not accounted for adequately by the
other components. In the end, I wound up using only two: a logistic-regression based approach (section 2.1) which
I believe does a good job of finding the absolute “skill” of a player, but a poor job accounting for either uncertainty
or variations in skill over time; and also a modified version of Glicko ([2] and section 2.2), which I believe does a
decent job of accounting for uncertainty and changes in skill over time, but never looks back over its predictions in
order to re-evaluate them in light of more recent games, and therefore doesn’t “fit” the data as well as it might.

If time had permitted, I would have attempted to implement a variant of Trueskill Through Time ([3, 4] and as
described by Jeremy Howard in the Kaggle forums for the “Chess ratings - Elo versus the Rest of the World”
challenge), which I believe would have outperformed Glicko, while still capturing the same essential information.
My blending model is described in section 2, but my suspicion is that many other teams attempted to implement
essentially the same approach, and did so better than I did. The main reason why my entries performed well in the
competition was the technique which I used to exploit what has come to be called “future scheduling”.

I’m not a chess player (at least, not a good one), and have never participated in the chess tournament. After a bit of
research, however, I learned that chess tournaments are generally organized according to the “Swiss system”; in which,
at each round, players are matched against other players with similar records in the tournament. Elimination-style
tournaments evidently do take place, but are far less common—I am unsure if any such tournaments are present in
the dataset. The upshot of this is that if a weak player, in a particular month, is matched against a large number of
stronger players, then it is likely that they are all participants in the same Swiss-style tournament, and furthermore
that the weak player is, for this month at least, outperforming what we previously believed to be his or her skill
level.

It is immediately clear that the use of this information should dramatically improve performance. The main
difficulties in making use of this information are:

1. The dataset is noisy: the test dataset has a number of spurious games added, and also probably does not
include all games by all players in a particular tournament.



2. There are a large number of players who played few enough games in the test dataset that any “future
scheduling™based inferences we attempt to make about their performance will be based on few examples, and
will therefore be unreliable.

Hence, when attempting to perform future scheduling, the approach must be, to the greatest extent possible, robust.
My solution was to break this problem into two subproblems. In the first of these, the task is to answer the question
“is this player a participant in a Swiss-style tournament this month, and do we have enough data to make use of this
information”, and the second is to either predict the player’s skill without using future scheduling (if the answer is
“no”), or to do so while making use of future scheduling (if the answer is “yes”). The precise technique used to solve
both of these subproblems is logistic regression, using my previously-mentioned “blended” skill measure, as well as
a number of features derived from the testing data which I believed would include much of the relevant tournament
information. This will be described in section 3.

2 Blended skill measure

2.1 Logistic model

In the setting of this competition, we have n games, each of which is played between white and black players
w;, b; € {1,...,m} at time ¢; € [—1, 1] (the “times” in the dataset are actually quantized to the level of months, but
these may be easily scaled to any desired range). The outcome of the ith game is y; € {0,1/2,1}, denoting a loss,
draw, or win by the white player, respectively. The task is to predict e; € (0,1) for i € {1,...,n} minimizing:
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If y; € {0,1}, then this would be the logit loss, which suggests the use of some variant of logistic regression. While
successful models such as Glicko, Chessmetrics and Trueskill all optimize no objective in particular, it seemed to
me that since we were given a clear objective to minimize, it would only be sensible to be sure to be optimizing
exactly this objective wherever possible. As a result, I made frequent use of logistic regression in my approach, of
which this is the first example. The main assumption behind this model is that the “skill” of the jth player at time
t is a quadratic function of ¢. This is obviously a very coarse approximation, and likely results in skill estimates
which are overly smooth. Still, it works pretty well:
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With this skill measure in hand, we may assume that the log-odds of a victory for the white player are given by
the difference of the two players skills, and parametrize e; as:
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Here, 8y and B; are coefficients which represent the advantage of the white player as a linear function of the average
skill of the two players. Adding in regularization penalties Mg, A1, A2 on a(o),a(l),a@) :1 € {l,...,n} yields the
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regularized objective:

< 1
il —yi)l
Z (ZU Oglo + (1 —yi) logyg 1— 62_)

=1
+ “”H e ERlIEE S B
2;“(1 2—}—2;0[ 2+2;a 2

(logyg (1 + expig (Bo + Bu (sw; (£1) + s, (£1)) + (sw; (1) = sp; (£))))

_M3

Il
—

K2

—Yi (Bo + B (sw; (ti) + sv, (i) + (8w, (t:) — b, (i)
2 [+ 3 3 [+ 2 X
+2;Ha 2+2;a 2+2;a 2

This is pretty horrendous-looking, but its derivatives are quite simple:
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Here, 4 is the Kronecker delta function. I optimized this objective using the conjugate gradient algorithm, yielding
the values of the coefficients [y, 51 and a§0>,a§”,a§2> : 4 € {1,...,n}, permitting the skill of each player, at
each time, to be found by evaluating equation 2. Models of this same basic form will be used repeatedly in the
remainder of this writeup (but will be described in less detail). The values of the regularization penalties are

Ao = 0.5,A1 = 8, A2 =4, and may be found in the “.conf” files in my implementation.

I actually made a few minor tweaks to this model in the final version. For one thing, I trained not just on the
primary training data, but also on the secondary and tertiary data. In these two additional data sources, it is
unknown which players were white, and which were black, so the 8y and 8y terms (representing the advantage of
the white player) were not included. Also, in order to reduce overfitting, y; = 1 were set to y; = 0.98, and y; = 0
to y; = 0.02 (which were found empirically to work best)-the intuition behind this is that there should be a little
bit of an aspect of “you are who you play’—someone who loses to very good players is likely to be at least a pretty
good player himself.

2.2 Glicko

My implementation of Glicko is identical to that described on Mark Glickman’s web page ([2]). As I did for the
logistic regression-based model, I trained the Glicko model using all three of the primary, secondary and tertiary
training datasets. For the first of these, I modified Glicko very slightly to give a small (25 point) advantage to
white, by replacing replacing the following expression for the expected game outcome (from the Glicko web page):
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with:
E (s | 1,75, RD;) = (1 + 107910 @547/ 400) -

assuming that player j is the black player (otherwise, the constant is —25). As Jeff Sonas suggested in his forum
post, the constant ¢, which controls how quickly our uncertainty in the skill of an idle player grows, was set to 15.8.

2.3 Blending

One concern which I had, once I settled on my “multi-tier” approach of first attempting to learn player skills based
only on some simple models, then blending them, and finally adjusting these predictions based on future scheduling
(section 3) was the risk of “using up” the training data. If I used the entire dataset, future and past alike, to predict
every game, then the predictions, on the training data, would naturally depend on the entirety of the training data.
On what independent data source, then, would I train the blended and future scheduling predictor?

My solution was to incrementally train both the logistic regression and Glicko models based only on the past. More
precisely, for each month ¢, I trained a version of each of these models using all months < ¢, and then saved their
predictions (along with some additional quantities, such as the Glicko deviation) on month ¢. The complete set of
these predictions were then used, along with the known game outcomes, to train a logistic regression blend with
the objective of equation 1 plus a regularization term % ||w||§, where:
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where z; is a feature vector for the ith game (the features themselves will be listed in section 2.4). Once more,
this model was trained using the conjugate gradient algorithm. For this model, I trained using A = 1, and only
used the last two years of the primary training data, and only on those games for which both players had played at
least 12 games in the previous two years. Also, similarly to the logistic regression skill model, I decreased y; = 1 to
y; = 0.99 and increased y; = 0 to y; = 0.01. Once more, these choices were based on empirical performance on the
validation set, and have no other justification.

The final output of this model is the value of b + w”x; for each i in the training and testing sets. While the
logistic regression skill model and Glicko model were both trained using only the past, the coefficients chosen by
this blending procedure depend on the entirety of the training set, and therefore are not “independent” of any of the
training data. I chose to ignore this, and use the output of this blending model on the training data in order to train
the future scheduling predictor to be described in section 3. My justification for this decision was that while the
optimal blending coefficients (contained in the bias b and weight vector w) may depend on all of the training data,
the quantities which it is blending (the feature vectors x;) do not, and therefore that the dependency introduced
between each training example, and its blended prediction, would be weak enough that it could still be used for
training.

2.4 Features

The features z; used for the ith game in the logistic blending model were all derived from the output of the logistic
regression skill model of section 2.1, the Glicko model of section 2.2, and some general statistics for the players
participating in the game. They are:

e The skills found by the logistic skill model for both players
e The skills found by the Glicko model for both players

e The deviations found by the Glicko model for both players



e The product of the Glicko deviances with each of the two logistic skills
e The product of the Glicko deviances with each of the two Glicko skills
e The Glicko deviances, times —1 if the black player’s logistic skill is higher than the white player’s

e The product of the Glicko deviances with each of the two logistic skills, times —1 if the black player’s logistic
skill is higher than the white player’s

e The product of the Glicko deviances with each of the two Glicko skills, times —1 if the black player’s Glicko
skill is higher than the white player’s

e The average logistic skill of the white player’s opponents over the past 24, 12, 6 and 3 months
e The average logistic skill of the black player’s opponents over the past 24, 12, 6 and 3 months
e The proportion of wins by the white player over the past 24, 12, 6 and 3 months
e The proportion of wins by the black player over the past 24, 12, 6 and 3 months

) The average logistic gkill of the white player’s opponents over the past 24, 12, 6 and 3 months, times
128 max (g4, 128), = 51 Max (ne4, 64), = 35 Max (n32, 32) and 1z max (ni¢, 16), respectively, where ny, is the num-
ber of games played by the white player over the past k months

° The average logistic skill of the black player’s opponents over the past 24, 12, 6 and 3 months, times
128 max (g4, 128), = 51 Max (ne4, 64), = 35 max (n32, 32) and 15 max (ni¢, 16), respectively, where ny, is the num-
ber of games played by the black player over the past k& rnonths

° The proportion of wins by the white player over the past 24, 12, 6 and 3 months, times 128 max (14, 128),
ﬁ max (ng4,64), = 35 Max (n3z, 32) and Tls max (n16, 16), respectively, where ny is the number of games played
by the white player over the past k£ months

e The proportion of wins by the black player over the past 24, 12, 6 and 3 months, times % max (14, 128),
o max (ngq, 64), 55 max (ng2, 32) and 7= max (nie, 16), respectively, where ny, is the number of games played
by the black player over the past k& months
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o 11z max (ngy, 128), & max (ne4, 64), 35 max (ns2,32) and 15 max (nie, 16), where ny is the number of games

played by the white player over the past £ months

e 11z max (ngq, 128), & max (nes, 64), 55 max (ng2,32) and 15 max (nie, 16), where ny is the number of games

played by the black player over the past k& months

3 Future scheduling

3.1 Mixture model

The main idea behind my technique for performing future scheduling was to break the problem into two stages,
the first of which determines whether future scheduling should be performed on a particular game, and the second
actually performing it. In order to accomplish this, I used something akin to a mixture model, in that both of these
subproblems were solved in parallel. Once more, I used what is essentially logistic regression, with the regularized
objective:
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here, p (b, w; ;) is the probability that mixture component 1 should be used, and is based on the feature vector

x; for game i containing features which I believed would be useful in determining whether future scheduling was
2

worth performing, as well as coefficients b and w. Similarly, ¢; (al, V1; yi(l)> and go (ag, V23 Y, ) are the predictions

of the two mixture components, each of which is based on different feature vectors. I experimented with the choice
1)

of these features, but found that the best performance was achieved when y,”’ was left as only the output of the

blended predictor of section 2, while yl@) contained these predictors, along with a number of features meant to
capture the structure of any tournament in which the participants of the ith game may have participated. These

functions were taken to have the form:
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As before, the objective includes regularization penalties A, 71,72 to the weights w,vy,vs, but not to the biases
b,a1, a2, with A = 16, v; = 1 and 2 = 64 (the blended skill features in yi(z), but not the others, were scaled by
a factor of 8 in order to compensate for this large regularization penalty). As was the case in section 2.1, the
derivatives of this objective with respect to the biases and weights are fairly simple. Optimization was performed
by performing a fixed number of conjugate gradient iterations to optimize b, w, then a1, v, then as,vs, and finally
repeating. As was the case for the blending model of section 2.3, I decreased y; = 1 to y; = 0.99, increased y; = 0 to
y; = 0.01, and trained only on those games in the last two years of the primary training set for which both players
had played at least 12 games in the previous two years.

3.2 Features

I discussed the three different feature vectors, x;, yl(l)7 yZ@) used by the future scheduling predictor. These vectors
are each composed of “subsets” of features, which are conceptually related. These are the output of the blended
model of section 2.1 (included in all three feature vectors), “indicator” features designed to determine whether
future scheduling should be performed (included in z; and yZ@)), and “tournament” features designed to use future

scheduling to improve the predictions (included only in ygg)).

3.2.1 “Indicator” features

Many of these features are of a number of “soft indicators” for whether a certain quantity has at least a certain

value. What I mean by a “soft indicator” is this: suppose that the white player has played 14 games this month,

and we have soft indicators for whether the player has played at least 4, 8, 16 or 32 games. Then, the soft indicator

for having played at least 4 or 8 games will be 1, that for having played at least 32 will be zero, and that for 16 will
14-8 _ 3
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The features included in this feature set are:

e Soft indicators for whether the white player has played at least 2, 3, 4, 6, 8, 12, 16 or 32 games this month

e Soft indicators for whether the black player has played at least 2, 3, 4, 6, 8, 12, 16 or 32 games this month

e Soft indicators for whether the white player’s opponents this month have played an average of at least 2, 3,
4,6, 8, 12, 16 or 32 games



e Soft indicators for whether the black player’s opponents this month have played an average of at least 2, 3, 4,
6, 8, 12, 16 or 32 games

e Soft indicators for whether the white and black player have played each other at least 2, 3, 4, 6 or 8 times
this month

Also included are some “neighborhood” features, which attempt to capture the broader tournament structure sur-
rounding each player. Each of these features has an associated depth d. The depth-d tournament feature is
calculated by, starting from the white player, and ignoring all games played between the white and black player this
month, finding all of the white players opponents this month, all of their opponents, and so on, out to depth d.
These will be called the “depth-d opponents” of the white player. Then, the same is done for the black player. If
the two players participated in the same tournament, then one would expect the amount of overlap to be large.
Hence, the proportion of the depth-d opponents of the white player who are also depth-d opponents of the black
player is found, and saved as a feature. The same is done for the proportion of the depth-d opponents of the black
player who are also depth-d opponents of the white player. The complete set of these features are:

e Depth 1, 2, 3 and 4 neighborhood features

3.2.2 "Tournament” features

As with the “neighborhood” features, each “tournament” feature has an associated depth d. First, for each game
d, we have a approximately linear measure of the difference in skill between the two players, as predicted by the
blended predictor of section 2 (b + w”x;), and will define the “relative skill” of the white player to be half this
quantity, and of the black player to be —% times this quantity. For, say, depth 3 tournament features of game i, we
would find all of the white player’s opponents opponents opponents this month, and find the relative skills of these
players compared to the white players opponents opponents. The same would then be done for the black player,
and various percentiles of these sets of relative skills outputted. Actually, two sets of percentiles are outputted, one
of which includes games which are repeated in the list of relative skills, and the other of which does not (I call the
latter “reduced percentiles”). The idea here is just what was described in the overview section: the quality of the
white player’s opponents indicates how well this player is performing this month, the quality of their opponents
indicates how well they are performing, and so on. The features included in this feature set are:

e 25.1th, 50th and 74.9th percentiles and reduced percentiles at depths 1, 2, 3 and 4

4 Implementation

Source code can be found in the implementation directory, although it was all coded in a rush, and is therefore very
difficult to read (there’s quite a bit of cut-and-paste code, for example). Most of the programs take a “.conf” file as
a command-line parameter, which includes the parameters to the various models, and also input and output files for
each. There are three configuration files: one for the validation set, one for the testing set, and one for the followup
dataset, and the best reference for the parameters which I used in my submission is these files. One should run all
of the programs in sequence (the order in which they are listed below will work), because many of the programs
require the output of earlier programs as input—for example, many of the models depend, directly or indirectly, on
the logistic regression skill model of section 2.1 (which is created by the “model logistic skill” program).

e partition training data - creates a validation set (and a training set with the validation set removed) from
the training data

e model_glicko - trains the Glicko model (section 2.2)

e model logistic_skill - trains the logistic regression skill model (section 2.1)



e model combined skill - creates features from the Glicko and logistic skill models (section 2.4)
e model logistic_blend - creates a blended predictor (section 2.3)
e model_tournament_indicator - creates the “soft indicator” features (section 3.2.1)

e model neighbor - creates the “neighborhood” features (section 3.2.1), as well as some alternative tournament
features which I ultimately found to not be of use

e model_tournament_ skill - creates the “tournament” features (section 3.2.2)

e model logistic tournament - trains the future scheduling model (section 3.1)

All of these files also require datasets on which to run, which are not included. Please follow the instructions in
the README file in the “sample datasets” directory to see how to include the data files correctly. The output of
these programs will be placed in the “sample output” directory.
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